## ND Vector - C++

math c++

This is a N-Dimensional Vector class written in C++. While it can be used for any dimension, if you would like to use 3 or less dimensions including rotation functions check out my previous post (here)

VectorND.cpp

#ifndef __VECTOR_ND_H__
#define __VECTOR_ND_H__

#include "math.h"
#include <string>
#include <iostream>
#include <sstream>
/*
3D Vector and rotation functions.
Rotations about X, Y, Z, and any arbitrary vector
*/

struct VectorND {

long double* pts;

int dim;

VectorND() {
pts = new long double[0];
dim = 0;
}

VectorND(long double x) {
pts = new long double[1];
pts[0] = x;
dim = 1;
}

VectorND(long double x, long double y) {
pts = new long double[2];
pts[0] = x;
pts[1] = y;
dim = 2;
}

VectorND(long double x, long double y, long double z) {
pts = new long double[3];
pts[0] = x;
pts[1] = y;
pts[2] = z;
dim = 3;
}

VectorND(int _dim, long double* _pts) {
pts = new long double[_dim];
for(int i = 0; i < _dim; i++) {
pts[i] = _pts[i];
}
dim = _dim;
}

long double get(int i) {
return pts[i];
}

long double* get() {
return pts;
}

void set(int i, long double value) {
pts[i] = value;
}

/**
* assignment operator
*/
void operator=(VectorND v) {
pts = new long double[v.dim];
for(int i = 0; i < dim; i++) {
pts[i] = v.get(i);
}
}

/**
* equality operator
*/
bool operator==(VectorND v) {
for(int i = 0; i < dim; i++) {
if(pts[i] != v.get(i)) {
return false;
}
}
return true;
}

/**
* equality operator
*/
bool operator!=(VectorND v) {
for(int i = 0; i < dim; i++) {
if(pts[i] != v.get(i)) {
return true;
}
}
return false;
}

/**
*/
void operator+=(VectorND v) {
for(int i = 0; i < dim; i++) {
pts[i] += v.get(i);
}
}

VectorND operator+(VectorND v) {
VectorND vect(v.dim, v.get());
for(int i = 0; i < dim; i++) {
vect.set(i, pts[i] + v.get(i));
}
return vect;
}

void operator++(int) {
for(int i = 0; i < dim; i++) {
pts[i]++;
}
}

void operator++() {
for(int i = 0; i < dim; i++) {
++pts[i];
}
}

/**
* subtraction operators
*/
void operator-=(VectorND v) {
for(int i = 0; i < dim; i++) {
pts[i] -= v.get(i);
}
}

VectorND operator-(VectorND v) {
VectorND vect(v.dim, v.get());
for(int i = 0; i < dim; i++) {
vect.set(i, pts[i] - v.get(i));
}
return vect;
}

void operator--(int) {
for(int i = 0; i < dim; i++) {
pts[i]--;
}
}

void operator--() {
for(int i = 0; i < dim; i++) {
--pts[i];
}
}

/**
* division operators
*/
void operator/=(long double scalar) {
for(int i = 0; i < dim; i++) {
pts[i] /= scalar;
}
}

VectorND operator/(long double scalar) {
VectorND vect(dim, pts);
for(int i = 0; i < dim; i++) {
vect.set(i, pts[i] / scalar);
}
return vect;
}

/**
* multiplication operators
*/
void operator*=(long double scalar) {
for(int i = 0; i < dim; i++) {
pts[i] *= scalar;
}
}

VectorND operator*(long double scalar) {
VectorND vect(dim, pts);
for(int i = 0; i < dim; i++) {
vect.set(i, pts[i] * scalar);
}
return vect;
}

/**
* exponent operators
*/
void operator^=(float power) {
for(int i = 0; i < dim; i++) {
pts[i] = pow(pts[i], power);
}
}

VectorND operator^(float power){
VectorND vect(dim, pts);
for(int i = 0; i < dim; i++) {
vect.set(i, pow(pts[i], power));
}
return vect;
}

VectorND unit() {
VectorND vect(dim,pts);
double d;
for(int i = 0; i < dim; i++) {
d += pts[i] * pts[i];
}
d = sqrt(d);
vect = *(this) / d;
return vect;
}

/**
* toString()
*/
std::string toString() {
std::stringstream oss;
oss << "(";
for(int i = 0; i < dim - 1; i++) {
oss << pts[i] << ", ";
}
oss << pts[dim - 1] << ")";
return oss.str();
}

};
#endif

main.cpp

#include <iostream>
#include "VectorND.h";

using namespace std;

int main() {
cout << "Vector ND" << endl;
long double* pts = new long double[5]{1,2,3,4,5};
long double* pts2 = new long double[5]{1,2,3,4,5};
VectorND v(5, pts);
VectorND v2(5, pts);
cout << v.toString() << endl;
v *= 3;
cout << v.toString() << endl;
v /= 3;
cout << v.toString() << endl;
v += v2;
cout << v.toString() << endl;
v -= v2;
cout << v.toString() << endl;
v++;
cout << v.toString() << endl;
v--;
cout << v.toString() << endl;

cout << (v == v2) << endl;
cout << (v != v2) << endl;

cout << (v * 3).toString() << endl;
cout << (v / 3).toString() << endl;
cout << (v + v2).toString() << endl;
cout << (v - v2).toString() << endl;

cout << (v == v2) << endl;
cout << (v != v2) << endl;

cout << (v ^ 4).toString() << endl;
v ^= 4;
cout << (v).toString() << endl;
cout <<  v.unit().toString() << endl;
return 0;
}